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Abstract

Numerical simulations and experimental measurements of the fluid loadings on three typical fixed or moving bluff

bodies are presented and analysed. The numerical approach is based on an efficient finite-element solver using an

Arbitrary Lagrangian–Eulerian formulation for solving the two-dimensional incompressible Navier–Stokes equations

with moving domains. Experimental tests consist of unsteady pressure measurements performed during sectional model

tests. The Proper Orthogonal Decomposition applied to the wall pressure distributions is used in addition to spectral

analyses in order to explain complex flow signature and motion-induced mechanisms. Effects of body shapes and

dynamic characteristics (reduced wind speed, motion amplitude) on flow response and resulting loads are then

examined.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Since the spectacular failure of the Tacoma Narrows bridge in 1940, bridge deck aerodynamics and aeroelasticity

have received a large amount of attention. Methodologies for wind tunnel tests were first proposed by Farquharson

(1949–1954), along with early work on aeroelastic stability carried out by Bleich (1948). Then the flutter instability

problem which was first investigated experimentally and theoretically in aeronautics by Wagner (Theodorsen, 1935),

was extended by Bisplinghoff and Ashley (1962) and Scanlan and Tomko (1971), Sabzevari and Scanlan (1969) and

analytical formulations of forces acting on vibrating elongated bluff-bodies like long-span bridge decks were proposed

[see Scanlan (1993) for a review].

Several experimental approaches are used to assess the response of bridge decks to wind excitation: sectional tests,

taut-strip tests, full-bridge tests and full-scale measurements. Amongst all these approaches, the sectional tests remain

widely used in the design phase of bridges. The sectional model approach is based on structural dynamic analysis

coupled with analytical wind force models (Scanlan and Tomko, 1971; Scanlan 1993, 1997), introducing steady and

unsteady coefficients which have to be identified through specific model tests in wind tunnels. In this approach, the two-

dimensionality of the flow is mainly assumed but can be corrected with the aim of spanwise coherent function (Scanlan
e front matter r 2005 Elsevier Ltd. All rights reserved.
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Fig. 1. Cross-section displacement and pitching moment convention.

X. Amandolèse, C. Crémona / Journal of Fluids and Structures 20 (2005) 577–587578
et al., 1997). These wind force models, and more specifically the aeroelastic ones which account for the motion-

dependant response through the so-called aerodynamic damping and stiffness, involve motion-induced fluid

mechanisms that are still under investigation (Matsumoto, 1997). Moreover, progress in Computational Fluid

Dynamics and computer technologies provides today an alternative way for flutter derivative identification and research

on involved fluid mechanisms (Tamura and Itoh, 1993). Indeed, bridge decks, unless they are well streamlined, generate

complex flow signatures due to sharp-edge flow separation and flow instabilities (impinging shear layer instabilities,

trailing-edge vortex shedding) leading to particular unsteady aerodynamic pressure fields. Any change of the boundary

conditions due to the deck vibration induces flow adaptation involving complex motion-induced fluid mechanisms

which depend on the deck shape and on the vibrational characteristics according to the mean cross flow speed.

Within this context, the present paper is focused on the study of two-dimensional fluid mechanisms and resulting

loads on three typical bluff bodies: two rectangular shapes with side-ratios of 4 and 8, and the deck section of the Millau

bridge project. These shapes are moving in forced harmonic pitching motion in a transverse flow. In order to apprehend

basic flow phenomena the present study is also restricted to laminar flows. For this reason, the attention is restricted to

the study of the unsteady pressure fields and resulting forces.

Both numerical simulations obtained from moving-grid computation of the Navier–Stokes equations, based on an

efficient finite-element solver using an Arbitrary Lagrangian Eulerian (ALE) formulation, and dynamic sectional model

tests in wind tunnels have been performed and analysed. The Proper Orthogonal Decomposition (POD) applied to the

surface pressure distributions is used in addition to spectral analyses in order to explain motion-induced mechanisms,

and to understand their influence on loads and aeroelastic reduced-order models. Effects of body shapes and dynamic

characteristics on resulting loads are then examined. This paper concludes by highlighting the conditions for using a

CFD solver for the study of large-scale flow behaviour around moving bluff bodies. In the present paper incidence angle

and pitching moment are defined as in Fig. 1. The pitching motion amplitude is denoted ~a and the reduced velocity is

defined as U� ¼ U=fB, where U is the mean cross-flow velocity, B is the chord of the sectional model and f the

frequency of the imposed pitching motion aðtÞ ¼ ~a sinð2pftÞ.
2. Methods of investigation

2.1. Experimental tools

Experimental tests were carried out in the atmospheric wind tunnel of the CSTB centre in Nantes (France) using an

experimental rig (Cremona et al., 2003). A sectional model is able to oscillate in pitch with controlled frequency and

amplitude. Tested models are two rectangular shapes with side-ratios of 4 and 8, and a representative two-dimensional

cross-section of the Millau bridge project. Unsteady 2-D pressure fields were measured with approximately 60 pressure

taps installed on the surface of each model (Figs. 2–4).

The flow condition was mainly smooth with an approximate turbulence intensity of 0.7%. The Reynolds number was

close to 2.8� 105 for rectangular cylinders and 6.4� 105 for the Millau section.

2.2. Numerical tools

In order to numerically assess fluid loading responses on moving bodies, the unsteady incompressible Navier–Stokes

equations have to be solved within a moving domain. A finite-element solver developed at the INRIA research institute

in Rocquencourt by F. Hecht and C. Pares-Madronal (Pares–Madronal, 1992) has been used. The approach is based on

a purely Eulerian approach, modified to deal with an Arbitrary Lagrangian–Eulerian (ALE) formulation. A brief
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Fig. 2. Model of the rectangular section with side-ratio 4.

Fig. 3. Model of the rectangular section with side-ratio 8.

Fig. 4. Model of the ‘‘Millau’’ section.

Fig. 5. Typical mesh for the ‘‘Millau bridge section’’ numerical simulations.
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overview of this particular approach is presented here. The main characteristics of the algorithm are described in

Piperno (1997).

The space-discretization of the original solver is based on a classical finite element formulation. The computational

area is an unstructured triangulation of the domain, verifying classical regularity conditions. The time-discretization is

based upon a first-order characteristics method. Computation of upwind characteristics is based on a first-order time-

approximation. When the body moves, the fluid area is deformed. The triangulation is then modified at each time step.

In the ALE formulation each element of the triangulation is allowed to move using an elastic analogy. A compatible

velocity field in moving coordinates must then be specified to compute a generalized Stokes problem at each time step.

The fluid domain is a rectangular domain with dimension 11B� 14D, where B is the chord length and D the depth

related to the body sizes. Since no turbulence models have been introduced in the numerical approach, the scales of the

simulated phenomena depend strongly on the Reynolds number, mesh refinement choice and associated time step.

Influence of these numerical parameters have been performed by Amandolèse et al. (2000) in order to find reasonable

choices in relation to the large scales of fluid mechanisms that dominate the steady and the aeroelastic responses.

Results reported in this paper concern calculations performed for moderate Reynolds numbers, roughly ten times

smaller than the wind tunnel conditions (Re ¼ 2� 104 for R4 and R8; Re ¼ 5� 104 for Millau) with relatively rough

space and time discretizations (Fig. 5 and Table 1).
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Table 1

Numerical simulations characteristics

Section Total number of nodes Number of surface nodes dh dh=dT

R4, R8 E5000 300 0.008 2

Millau E5500 390 0.006 3
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In the table, dh ¼ Dh=B and dT ¼ DTU=B are the relative element dimension in the vicinity of the body surface and

the nondimensioned time step, respectively. Even if, as emphasized further, some discrepancies can be noticed with the

experiments, especially for the prediction of the mean local flow reattachment, numerical parameters that have already

been chosen permit us to understand fluid mechanisms and the corresponding unsteady pressure evolution when bodies

oscillate.
2.3. The Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) is a particularly well-suited technique for the analysis of unsteady

fluid components and for the detection of coherent structures (Holmes et al., 1996). It is mainly used for the

identification of reduced order models of the Navier–Stokes equations. This technique also seems to be powerful for

studying fluid loading on fixed and moving bluff-bodies (Hémon and Santi, 2002) and offers the advantage of capturing

the physics simultaneously in space and time. In this special case, the method consists on the decomposition of the

nondimensioned wall pressure field fCpðtÞg on proper orthogonal functions which are normalized eigenvectors of the

two-point correlation matrix [Rc] of the unsteady wall pressure distribution around the body:

fCpðtÞg ¼
Xk¼m

k¼1

mkðtÞfW kg, (1)

where m is the number of pressure taps used for the analysis, ðW kÞk¼1;m is the series of the m normalised orthogonal

eigenvectors which are associated with the decreasing series ðlkÞk¼1;m of the eigenvalues of the matrix [Rc]:

½Rc	fW kg ¼ lkfW kg,
tfW kgfW jg ¼ dk;j , ð2Þ

and [Rc] is defined as

½Rc	 ¼ ½rcði; jÞ	i¼1;m;j¼1;m,

rcði; jÞ ¼
1

N

XN

p¼1

Cp;iðtpÞCp;jðtpÞ: ð3Þ

Then the principal components mk are given by projecting the pressure field onto the kth proper function:

mkðtÞ ¼
tfW kgfCpðtÞg. (4)

The main interest of this method is that the set of proper functions for the decomposition is inherent to the mechanisms

involved around the body; indeed, the proper functions are not a priori chosen but depend on the spatial pressure

correlation around the body. Furthermore, as reported in Hémon and Santi (2002), because of the orthogonality of the

normalized set of proper functions, each eigenvalue lk is equal to the mean quadratic value of the principal component

mk:

lk ¼ ½mkðtÞ	
2 (5)

and are representative of the energy level contribution of each proper function in the average of the mean quadratic

pressure distribution along the body:

1

m

Xk¼m

k¼1

½CP;kðtÞ	
2 ¼

Xk¼m

k¼1

lk. (6)
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3. Preliminary POD analysis

In order to illustrate the efficiency of the POD technique for the analysis of pressure loads due to motion-induced

fluid mechanisms, numerical simulation of a rectangular section with side-ratio 8 in pitching motion (~a ¼ 0:066 rad;
U� ¼ 6) are presented in this section. The moment coefficient response is reported in Fig. 6 along with its associated

power spectrum. As expected, the time-domain signal exhibits a dominating harmonic component at a reduced

frequency close to 1/U*. Small contributions of the first and second harmonic components also appear as highlighted in

the POD analysis. POD analysis has been applied to the calculated unsteady wall pressure distribution.

The decreasing series ðlkÞk¼1;m of the eigenvalues of the two-point correlation matrix [Rc] is presented in Fig. 7.

Because the POD decomposition has been performed on the total pressure distribution without excluding the mean

value, the first proper function is representative of the mean pressure distribution. In Fig. 8, the mean pressure
Fig. 6. Response and power spectrum of pitching moment (R8 section).

Fig. 7. Eigenvalues of the correlation matrix [Rc].
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Fig. 8. Mean pressure distribution and 6 first unsteady proper functions (intrados and extrados). (a) Mean pressure; (b) W2 and W3;

(c) W4 and W5; (d) W6 and W7.

Fig. 9. Responses and spectrum of the first six unsteady principal components.
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distribution (for intrados and extrados) is reported with the six first proper functions which are representative of the

unsteady pressure loading. Time-domain response and power spectrum of their associated principal components are

reported in Fig. 9. The contribution of each proper function {Wk} to the moment response has been calculated by

integrating the associated pressure contribution:

fCk
PðtÞg ¼ mkðtÞfW kg. (7)

The sum of the first two, first four and first six unsteady proper functions to the moment coefficient are reported in

Fig. 9.

These results show that the unsteady characteristics of the moment coefficient are mainly represented by using the

first six unsteady proper functions (the first proper function being denoted as the ‘‘mean’’ proper function). According
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Fig. 10. Contribution of the first six unsteady proper functions to the moment coefficient response; - - -, total response. (a) First two

unsteady functions; (b) first four unsteady functions; (c) first six unsteady functions.
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to their associated principal component characteristics (Fig. 9) proper functions 2 and 3 are representative of the

pressure response at the imposed reduced frequency while proper functions 4 and 5 and proper functions 6 and 7 are

representative of the pressure response at the first and second harmonic of the imposed frequency, respectively. In

Fig. 10 the pitching motion response (in degrees, dashed curve) is compared to the principal component response

associated to the second proper function. This figure shows that m2ðtÞ is nearly in phase with aðtÞ, while a transfer

function between m3ðtÞ and m2ðtÞ reveals that these two principal components are in quadrature at the pitching motion

frequency; m3ðtÞ is therefore nearly in phase with _aðtÞ.
The contribution of each proper function to the in phase and quadrature response of the resulting moment has been

calculated with reference to the linear aeroelastic model of the pitching moment in the Scanlan notation (Scanlan, 1993):

~C
ae

M ðtÞ ¼ 2 KA�
2ðKÞ

B_a tð Þ

U
þ K2A�

3ðKÞaðtÞ
� �

, (8)

where A�
3;A

�
2 are the stiffness and damping flutter derivatives, respectively. The results show that the cumulative

contribution due to proper functions 2 and 3 predicts the linear aeroelastic response of the moment coefficient with an

r.m.s. error of 3%. Proper function 2 is, respectively, responsible for 95% of the stiffness flutter derivative A�
3, while

proper function 3 contributes to more than 90% of the damping coefficient A�
2. Stiffness and damping behavior of the

two first unsteady proper functions have been observed for various configurations.
4. Aeroelastic results for bluff sections oscillating in pitch

Numerical simulations obtained from moving-grid computations of the Navier–Stokes equations have been

performed on the rectangular sections and on the Millau section for various dynamic configurations. In order to assess

the capability of the numerical approach to capture the fluid loading responses to pitching motions, comparisons

between numerical results and experiments are performed for reduced velocity U� ¼ 6, ~a ¼ 0:07 rad for the R4

rectangular section (Figs. 11 and 12) and for the Millau cross-section (Figs. 13 and 14). Mean pressure distribution on

the upper surface and aeroelastic proper functions (i.e. stiffness proper function W2 and damping proper function W3

according to the POD projection) are shown. In Figs. 13 and 14 the proper functions are multiplied by the standard

deviation of the related principal component in order to take into account the fluctuation amplitude.

The R4 results show that, despite an underestimation of the pressure level all along the upper surface, the mean

pressure distribution is correctly evaluated with a good prediction of the length of the mean separated region. The
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Fig. 12. Aeroelastic pressure distribution on the R4 upper surface: ’, proper function W2 (experimental); &, proper function W2

(numerical); �, proper function W3 (experimental); J, proper function W3 (numerical).

Fig. 11. Mean pressure distribution on the R4 upper surface: - - -, experimental; —, numerical.

Fig. 13. Mean pressure distribution around the Millau section: - - -, experimental; —, numerical.
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Fig. 14. Aeroelastic pressure distribution around the Millau section: ’, proper function W2 (experimental); &, proper function W2

(numerical); �, proper function W3 (experimental); J, proper function W3 (numerical).

Fig. 15. Body shape influence on the ‘‘damping’’ pressure distribution (upper surface).
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numerical prediction of the proper functions 2 and 3 are also close to experiments highlighting that the motion-induced

fluid mechanisms are well predicted.

For the Millau section, aeroelastic proper functions reported in Fig. 13 show that the fluid loading response is mainly

due to leading edge separated shear layer adaptation to pitching motion on both the upper surface and the lower

surface. As a consequence, the significant discrepancy noticed on the prediction of the mean pressure distribution over

the elastic center ðX40Þ does not influence the aeroelastic prediction. Nevertheless one can notice that the length of the

mean leading edge separated region on the upper surface is numerically overestimated. As a consequence, the shapes of

proper functions 2 and 3 are close to experiments but shifted toward the elastic center (located at the middle of the

chord). This could generate a significant underestimation of the absolute values of A�
3;A

�
2 which are positive and

negative for such a streamlined section, respectively.

Body shape influence on aeroelastic pressure responses is highlighted in Fig. 15. The damping proper function 3,

extracted from POD analyses of unsteady pressure measurements, is presented for the R4, R8 and Millau sections

ð~a ¼ 0:07 rad; U� ¼ 6Þ. As reported previously, the relative position of the fluid adaptation domain depends on the

length of the mean leading edge separated region. The damping proper function 3 for the R4 section is important and

positive for X=B40 which indicates that the pressure distribution work per pitching cycle is positive, i.e. the A�
2 flutter

derivative is positive. For higher side-ratios, the length of the mean leading edge separated region decreases. Because
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Fig. 16. Influence of the reduced velocity on the ‘‘damping’’ pressure distribution (R4 upper surface).

Fig. 17. Influence of the pitching amplitude on the ‘‘damping’’ pressure distribution (R4 upper surface).
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there is no motion-induced vortex generated along the surface that could change the damping proper function shape, A�
2

decreases for the R8 section and is negative for the Millau section.

Influence of the reduced velocity and pitching motion amplitude on the damping proper functions for the R4 section

is reported in Figs. 16 and 17. Those results are issued from the POD analysis of numerical simulations. The shape of

the damping pressure distribution for U� ¼ 4 is close to the one reported for U� ¼ 6, but the position of the fluid

adaptation domain moves towards the elastic center, and then A�
2 will decrease. For U� ¼ 2 the damping proper

function changes due to a stronger shear imposed on the leading-edge separated region. The sign of the associated A�
2

flutter derivative then changes and becomes negative. As highlighted in Fig. 17, the pitching motion amplitude has a

significant influence on the aeroelastic pressure response. Indeed it tends to shift the fluid adaptation domain towards

the elastic center when the amplitude is decreasing. Consequently, the A�
2 flutter derivative is reduced.
5. Conclusions

Pressure responses around two rectangular sections and a deck section of the Millau bridge project in pitching motion

have been studied using the Proper Orthogonal Decomposition. Results have shown that this technique is a simple and
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powerful tool that highlights the influence of the body shapes and motion characteristics (reduced velocity, amplitude)

on the aeroelastic pressure responses and resulting flutter derivatives. Indeed, two unsteady proper functions seem to be

sufficient to mimic satisfactorily linear aeroelastic responses. Results have also shown that aeroelastic pressure

responses are mainly due to the adaptation of the leading edge separated region. The validation of the separated region

is a prerequisite for performing accurate numerical aeroelastic predictions. It is particularly important for streamlined

sections for which the predictions of the local flow separation and reattachment are not so easy to handle.
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Amandolèse, X., Bourquin., F., Cremona, C., 2000. Numerical investigation of aerodynamic forces on rectangular cylinders and

generic bridge deck sections. In: Ziada, S., Staubli, T. (Eds.), Flow Induced Vibration. Balkema, Dordrecht, pp. 141–148.

Bisplinghoff, R.L., Ashley, H., 1962. Principles of Aeroelasticity. Wiley, New York.

Bleich, F., 1948. Dynamic instability of truss-stiffened suspension bridges under wind action. Proceedings ASCE 74, 1269–1314.

Cremona, C., Amandolese, X., Grillaud, G., Flamand, O., 2003. Fluid-loading simulations around bridge decks. Revue Francaise de

Genie Civil 7 (6), 717–743.

Farquharson, F.B., 1949–1954. Aerodynamic stability of suspension bridges. University of Washington. Bulletin 16, Parts 1–4.

Hémon, P., Santi, F., 2002. On the aeroelastic behavior of rectangular cylinders in cross-flow. Journal of Fluids and Structures 16,

855–889.

Holmes, P., Lumley, J.L., Berkooz, G., 1996. Turbulence, Coherent Structure and Symmetry. Cambridge University Press, Cambridge.

Matsumoto, M., 1997. Torsional flutter of bluff bodies. Journal of Wind Engineering and Industrial Aerodynamics 69–71, 871–882.
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